

2H-XVD&2G-XVD Series

FIXED INPUT, ISOLATED & UNREGULATED Single/Dual Output DC/DC Converter

FEATURES

◆High Efficiency up	to	81%
---------------------	----	-----

- ♦6KVDC Isolation
- ◆DIP24 Package
- ◆Low Isolation capacitance
- ◆Temperature Range -40°C~+85°C
- ◆No Heat Sink Require
- ◆Internal SMD Construction
- ◆No External Component Required
- ◆Continuous short circuit protection
- ◆Industry Standard Pin out
- ◆RoHS Compliance

MODEL SELECTION 2G⁰05⁰05⁸X⁸V⁵D⁸

- 1) Product Series
- ②Input Voltage
- ③Output Voltage
- **4** Fixed Input
- ⑤Footprint Rank Shape ⑥DIP24 Package

APPLICATIONS

The 2G-XVD & 2H-XVD Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- 1) Where the voltage of the input power supply is fixed (voltage variation≤10%);
- 2) Where isolation is necessary between input and output (isolation voltage≤6000VDC);
- 3) Where the regulation of the output voltage and the output ripple noise are not demanded.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

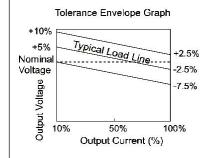
PRODUCT PROGRAM								
	Input Voltage(VDC)		Output			F		
Part Number			Voltage	Current (A)		Efficiency (%,Typ)	Certificate	
	Nominal	Range	(VDC)	Max	Min	(,,,,),		
2H0505XVD			5	400	40	75	UL	
2H0509XVD			9	222	23	76	UL	
2H0512XVD			12	167	17	78	UL	
2H0515XVD	5	4.5-5.5	15	133	13	77	UL	
2G0505XVD			±5	±200	±20	75	UL	
2G0509XVD			±9	±111	±12	77	UL	
2G0512XVD			±12	±84	±9	79	UL	
2G0515XVD			±15	±67	±7	78	UL	
2H1205XVD			5	400	40	75	UL	
2H1209XVD			9	222	23	78	UL	
2H1212XVD			12	167	17	80	UL	
2H1215XVD	12	10.8-13.2	15	133	14	78	UL	
2G1205XVD	12	10.0 10.2	±5	±200	±20	76	UL	
2G1209XVD			±9	±111	±12	78	UL	
2G1212XVD			±12	±84	±9	80	UL	
2G1215XVD			±15	±67	±7	78	UL	
2H2405XVD			5	400	40	77		
2H2409XVD			9	222	23	78		
2H2412XVD			12	167	17	81		
2H2415XVD*	24	21.6-26.4	15	133	14	80		
2G2405XVD*			±5	±200	±20	77		
2G2409XVD*			±9	±111	±12	78		
2G2412XVD*			±12	±84	±9	81		
2G2415XVD*	414///11 20/	D 4)M = ==i==	±15	±67	±7	80		

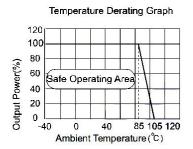
Note: The G_XVD 1W/H_XVD 1W series also are available in our company.

ISOLATION SPECIFICATIONS								
Item	Test conditions	Min.	Тур.	Max	Unit			
Isolation voltage	Tested for 1 minute and 1mA max	6000			VDC			
Isolation resistance	Test at 500VDC	1000			МΩ			
Isolation capacitance			3.5		PF			

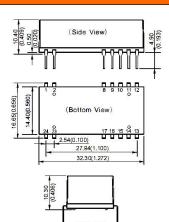
COMMON SPECIFICATIONS							
Item	Test conditions	Min. Typ. Max			Units		
Storage humidity				95	%		
Operating temperature		-40		85			
Storage temperature		-55		125	ိုင		
Temp. rise at full load			15	30			
Lead temperature	1.5mm from case for 10 seconds			300			
Short circuit protection		Continuous					
Cooling		Free air convection					
Case material		Plastic(UL94-V0)					
MTBF		3500			K hours		
Weight			8.2		g		

2H-XVD&2G-XVD Series

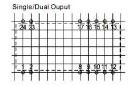

OUTPUT SPECIFICATIONS


Item	Test co	Min.	Тур.	Max.	Units	
Output power		0.2		2	W	
Line regulation	For Vin ch			±1.2		
Load regulation		5V output		10	15	
	10% to 100%	9V output		8.3	15	%
	load	12V output		6.8	15	
		15V output		6.3	15	
Output voltage accuracy		See	tolerance	envelope	graph	
Temperature drift	100%			0.03	%/℃	
Ripple & Noise*	20MHz E		150	250	mVp-p	
Switching frequency	Full load,	5V input		35		1411
	nominal input	12V,24V input		50		KHz

*Test ripple and noise by "parallel cable"method. See detailed operation instructions at Testing of Power Converter section, application notes.


Note: Dual output models unbalanced load: $\pm 5\%$

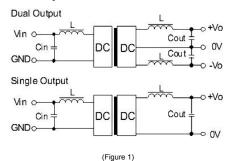
TYPICAL CHARACTERISTICS


OUTLINE DIMENSIONS & PIN CONNECTIONS

16.65(0.656) Voil:mm(inch)
Pin section:0.50*0.30mm(0.020*0.012inch)
Pin section tolerances:±0.10mm(±0.004inch)
General tolerances:±0.25mm(±0.010inch)

First Angle Projection ← ●

RECOMMENDED FOOTPRINT Top view,grid:2.54mm(0.1incl diameter:1.00mm(0.039inch)



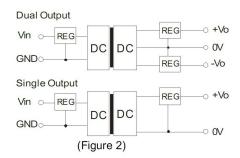
FOOTPRINT DETAILS					
Pin	Single	Dual			
1	Vin	Vin			
2	GND	GND			
8, 17	NC	-Vo			
10, 15	0V	OV			
12. 13	+Vo	+Vo			
Others	NC	NC			

NC: No connection

Recommended testing and application circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1) .

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the greatest capacitance of its filter capacitor sees (Table 1).


EXTERNAL CAPACITOR TABLE (Table 1)

Vin	Cin	Single Vout	Cout	Dual Vout	Cout
(VDC)	(µF)	(VDC)	(µF)	(VDC)	(µF)
5	4.7	5	10	±5	4.7
12	2.2	9	4.7	±9	2.2
24	1	12	2.2	±12	1
		15	1	±15	1

It's not recommend to connect any external capacitor in the application field with less than 0.5 watt output.

Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).

Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect self-recovery fuse in series at the input end or add a circuit breaker to the

No parallel connection or plug and play.

- All specifications measured at Ta=25^oC, humidity<75%,nominal input voltage and rated output load unless otherwise specified
- 2. Only typical models listed, other models may be different, please contact our technical person for more details
- 3. Operation under minimum load will not damage the converter; However, they may not meet all specification listed.

Microdc Professional Power Module,Inc.

Tel:0086-20-86000646 E-mail:tech@microdc.cn Website:http://www.microdc.cn

RoHS COMPLIANT INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature

This series is companied with rorts soluting systems with a pear wave solution and of 300° C for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with Sn/Pb soldering systems.

REACH COMPLIANT INFORMATION

This series has proven that this product does not contain harmful chemicals, it also has harmful chemical substances through the registration, inspection and approval.